Cyclic Composition operators on Segal-Bargmann space

نویسندگان

چکیده

Abstract We study the cyclic, supercyclic and hypercyclic properties of a composition operator C ϕ on Segal-Bargmann space ℋ(ℰ), where ( z ) = Az + b , A is bounded linear ℰ, ∈ ℰ with || ⩽ 1 * belongs to range I – )½. Specifically, under some conditions symbol we show that if cyclic then A* but converse need not be true. also cyclic. Further there no ℋ(ℰ) for certain class symbols .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toeplitz Operators with Bmo Symbols on the Segal-bargmann Space

We show that Zorboska’s criterion for compactness of Toeplitz operators with BMO symbols on the Bergman space of the unit disc holds, by a different proof, for the Segal-Bargmann space of Gaussian square-integrable entire functions on Cn. We establish some basic properties of BMO for p ≥ 1 and complete the characterization of bounded and compact Toeplitz operators with BMO symbols. Via the Barg...

متن کامل

Bounded Berezin-toeplitz Operators on the Segal-bargmann Space

We discuss the boundedness of Berezin-Toeplitz operators on a generalized Segal-Bargmann space (Fock space) over the complex n-space. This space is characterized by the image of a global Bargmanntype transform introduced by Sjöstrand. We also obtain the deformation estimates of the composition of Berezin-Toeplitz operators whose symbols and their derivatives up to order three are in the Wiener ...

متن کامل

Compact Toeplitz operators on Segal–Bargmann type spaces

We consider Toeplitz operators with symbols enjoying a uniform radial limit on Segal–Bargmann type spaces. We show that such an operator is compact if and only if the limiting function vanishes on the unit sphere. The structure of the C∗-algebra generated by Toeplitz operators whose symbols admit continuous uniform radial limits is also analyzed.

متن کامل

Algebraic Properties and the Finite Rank Problem for Toeplitz Operators on the Segal-bargmann Space

We study three different problems in the area of Toeplitz operators on the Segal-Bargmann space in C. Extending results obtained previously by the first author and Y.L. Lee, and by the second author, we first determine the commutant of a given Toeplitz operator with a radial symbol belonging to the class Sym>0(C ) of symbols having certain growth at infinity. We then provide explicit examples o...

متن کامل

Finite Sections of Segal-bargmann Space Toeplitz Operators with Polyradially Continuous Symbols

We establish a criterion for the asymptotic invertibility of Toeplitz operators on the Segal-Bargmann space on C whose symbols have the property that the polyradial limits r 1 ^ 0 0 a ( r l ' l » " » ' V t f ) \ ,-,rN-KX> exist for all (t{, . . . , tN) € T^ and represent a continuous function on T^ .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Concrete Operators

سال: 2022

ISSN: ['2299-3282']

DOI: https://doi.org/10.1515/conop-2022-0133